Chaptee 12
Introduction to GENESIS
Programming

DAVID BEEMAN and MATTHEW A. WILSON

12.1 Simulating a Simple Compartment

Part | of this book has used several existing GENESIS simulations to introduce some of the
theory underlying neural modeling. In Part Il, we will build upon this background, using
the GENESIS script language to create our own simulations. We will begin by simulating a
simple neural compartment like that described in the first two sections of Chapter 2. Before
proceeding with this tutorial, you may find it useful to review that material.

Figure 12.1 shows the equivalent electrical circuit of the basic passive neural compart-
ment that is provided with GENESIS. Note that it is essentially the same as the “generic”
neural compartment shown in Fig. 2.3, except that we have not shown the connections to
neighboring compartments, nor added any variable conductance ionic channels. GENESIS
provides these basic compartments, various types of channels that may be added, axonal
connections to synapses and many other building blocks that are used to construct the sim-
ulation.

12.2 Getting Started with GENESIS

This chapter and the ones that follow describe the most important features and syntax of
GENESIS. In order to avoid drowning you in a flood of arcane details, we will introduce the

203

204 Chapter 12. Introduction to GENESI S Programming

Lt VAVAYAYAAY, ® V,
Ra
Cm Rm
—— Iinject
Em

Figure12.1 Theequivalent circuit for a passive neural compartment.

use of GENESIS a little at a time, giving only the information that is needed at each stage
of model building. GENESIS is continually evolving, and there will undoubtedly be new
features incorporated into future versions. Although GENESIS presently runs only under
the UNIX operating system with X-windows, future versions may support other operating
systems and graphical interfaces.

Thus, these tutorial chapters should be used in conjunction with the GENESIS Refer-
ence Manual, which is distributed as a set of files accompanying the GENESIS distribution.
These files may be used to generate the printed manual or may be viewed as part of the
on-line GENESIS help facility. The manual is also provided in a hypertext version, so that
it may be viewed with a web browser. The reference manual and the example scripts in
the GENESIS Scripts directory will be periodically updated in order to keep you advised of
any changes since the publication of this book. In order to be sure that you have the latest
GENESIS distribution, please check the GENESIS WWW or ftp site (Appendix A).

The remainder of this chapter guides you through a brief session under GENESIS and
help you to set up and run a simple simulation. To obtain the most benefit from the following
sections, you should read them while logged into a workstation on which GENESIS has
been installed. At various points, you will be asked to enter GENESIS commands through
the keyboard. This will let you try them out and be sure that you understand the various
GENESIS commands as they are introduced.

To run the simulator, first make sure that you are at the UNIX shell command prompt.
At the prompt type “genesis”. If your path is properly configured this should start up
the simulator and display the opening credits. If you get a message such as “genesis:
Command not found”, check your path (echo $path) to be sure that it contains the gen-
esis directory (often /usr/genesis). Your home directory should contain a file named .simrc.

12.3. GENESIS Objects and Elements 205

If you are still not able to run GENESIS, you or your system administrator should consult
Appendix A, “Acquiring and Installing GENESIS”.

After the simulator has completed its startup procedure you should see the GENESIS
command prompt, indicating that you are now in the GENESIS Script Language Interpreter
(SLI). In the interpreter you can excute both UNIX shell and GENESIS commands. Try this
by typing

1s
This should invoke the UNIX Is command, displaying files in the current directory. Typing
listcommands
should produce a list of available GENESIS commands (including listcommands). Note
that some of these “commands”, like cos and sin, might more properly be called “func-
tions”, as we may be more interested in the values that they return than any actions that
they might perform. Nevertheless, we lump them all together as commands, and reserve
the term function for a command or function that we may write ourselves in the GENE-
SIS script language. Although there are a large number of available commands, you will
typically use a much smaller subset of these.
It is also possible to combine GENESIS and UNIX shell commands. Typing
listcommands | more
will “pipe” the output of the GENESIS command listcommands through the UNIX com-
mand more, thus allowing you to page through the listing.
listcommands | lpr
will “pipe” the output to the printer and
listcommands > myfile
will redirect the output into a file called myfile.

12.3 GENESIS Objects and Elements

The building blocks used to create simulations under GENESIS are referred to as elements.
Elements are created from templates called objects or element types. In order to emphasize
this distinction, we give the names of GENESIS objects in boldface type and use italics for
the names of the elements that are created from them. The simulator comes with a number
of basic objects. To list the available objects type

listobjects
To get more information on a particular object type

showobject <name>
where “<name>” is replaced by any name from the object list.

The compartment object is most commonly used in GENESIS simulations to construct

parts of neurons. GENESIS also has another type of compartment, the symcompartment,
in which the axial resistance R shown in Fig. 12.1 is symmetrically divided between the

206 Chapter 12. Introduction to GENESI S Programming

two sides of the compartment. However, the compartment is more computationally effi-
cient to use, and is adequate for most modeling. As we will be using this object, try the
command “showobject compartment” at this time. Most commonly used objects are
documented more thoroughly with the GENESIS help command. For example, to obtain a
detailed description of the equivalent circuit for the compartment object, type

help compartment | more
For more information about the GENESIS on-line documentation, simply type “help”.

12.3.1 Creating and Deleting Elements

To create an element from an object description, you use the create command. Try typing
the create command without arguments:

create
This results in a usage statement that gives the proper syntax for using this command. Most
commands will produce a usage statement if invoked without arguments or followed by
“~usage”. In the case of the create command, the usage statement looks like

usage: create object name [object-specific-options]

In this exercise we will create a simple passive compartment. In order to keep track of
the many elements that go into a simulation, each element must be given a name. To create
a compartment with the name soma, type

create compartment /soma

Elements are maintained in a hierarchy much like that used to maintain files in the
UNIX operating system. In this case, /soma is a pathname which indicates that the soma is
to be placed at the root or top of the hierarchy.

We will eventually build a fairly realistic neuron called /cell with a soma, dendrites,
channels and an axon. It would be a good idea to organize these components into a hierarchy
of elements such as /cell/soma, /cell/dend, /cell/dend/Ex_channel, and so on. If we do this,
we need to create the appropriate type of element for /cell. GENESIS has a neutral object
for this sort of use. An element of this type is an empty element that performs no actions
and is used chiefly as a parent element for a hierarchy of child elements.

To start the construction of our cell, give the commands

create neutral /cell
create compartment /cell/soma

As we no longer need our original element /soma, we may delete it with the command
delete /soma

12.3.2 Examining and Modifying Elements

The commands for moving about within the GENESIS element hierarchy are similar to their
UNIX counterparts. For example, to list the elements in the current level of the hierarchy

12.3. GENESIS Objects and Elements 207

use the le (list elements) command
le
You should see several items listed, including the newly created cell.

Each element contains data fields that contain the values of parameters and state vari-
ables used by the element. To show the contents of these data fields use the showfield
command. For example,

showfield /cell/soma -all
will display the names and contents of the data fields of the “soma”, along with some
other information such as the number of incoming and outgoing messages. This example
also illustrates the use of GENESIS command options. The option (“-al11”) follows any
command arguments and may be abbreviated to the shortest unambigous character string,
“~a”, in this case. Notice that the compartment object has fields Vm, Em, Rm, Cm, Ra,
and inject, corresponding to the labels in Fig. 12.1 and the variables in Eq. 2.1. To display
the contents of a particular field, such as the membrane resistance field Rm, type

showfield /cell/soma Rm

When working in GENESIS you are always located at a particular element within the
hierarchy which is referred to as the working element. This location is used as a default for
many commands that require path specifications. For example, the le command used above
normally takes a path argument. When the path argument is omitted the working element
is used and thus all elements located under the working element are listed. To move about
in the hierarchy use the ce (change element) command. To change the current working
element to the newly created soma, type

ce /cell/soma
Now you can repeat the showfield command used above, omitting the explicit reference to
the /cell/soma pathname:

showfield -all
This should display the contents of the soma data fields. You may find the current working
element by using the pwe (print working element) command. Try giving the command:

pvwe
Note the analogy between these commands and the UNIX commands Is, cd and pwd. By
analogy with UNIX, GENESIS uses the symbols “.” to refer to the working element, and
“..” to refer to the element above it in the hierarchy. Try using these with the le, ce and
showfield commands. Likewise, GENESIS has pushe and pope commands to correspond
to the UNIX pushd and popd commands. These provide a convenient method of changing
to a new working element and returning to the previous one. Try the sequence of commands

pushe /cell

pvwe

pope

pvwe

208 Chapter 12. Introduction to GENESI S Programming

The contents of the element data fields can be changed using the setfield command. To set
the transmembrane resistance of your soma, type

setfield /cell/soma Rm 10
You can set multiple fields in a single command as in

setfield /cell/soma Cm 2 Em 25 inject 5
Now if you use a showfield command on the element you should see the new values appear-
ing in the data fields.

12.4 Running a GENESIS Simulation

Most elements have the capability of performing a self-consistency test that will report
problems if some aspect of the element has been improperly specified. This test is invoked
with the check command. After the simulation is set up, it is a good idea to give the com-
mand

check
Before running a simulation the elements must be placed in a known initial state. This is
done using the reset command which should be performed prior to all simulation runs:

reset
If you now show the value of the compartment Vm field with the command

showfield /cell/soma Vm
you will see that it has been reset to the value given by the parameter Em. To run a sim-
ulation use the step command, which causes the simulator to advance a given number of
simulation steps. For ten steps, use

step 10
If you now display the Vm field, you will see that the simulator actually did something and
that the value has changed from its initial value due to the current injection. This field is an
example of a state variable. GENESIS state variables are data fields that are automatically
updated by the elements when they are “run” during a simulation. Normally, these are
protected with a “readonly” status so that they may be inspected, but may not be modified
with the setfield command.

12.4.1 Adding Graphics

Although we now have a working simulation, we need a better way to output the results
at each simulation step. Although GENESIS provides ways to send data to files for later
analysis, most simulations will make use of some graphical output to monitor the course of
a simulation. With that in mind, we will attempt to add a graph to the simulation that will
display the voltage trajectory of your soma.

12.4. Running a GENESIS Simulation 209

Graphics are implemented using graphical objects from the XODUS library that are
manipulated using the same techniques described above. The form is the graphical object
that is used as a container for all other graphical items. XODUS forms are the “windows”
that appear in the simulations which you used in the first part of this book. Thus, before
making a graph, we need to make a form in which to put it. We will arbitrarily name our
form /data, and create it from the xform object.

create xform /data
You may have noticed that nothing much seemed to happen. By default, forms are hidden
when first created. To reveal the newly created form use the command

xshow /data
An empty window should appear somewhere on your screen. To create a graph in this form
with the name voltage, use the command

create xgraph /data/voltage
Note that the graph was created beneath the form in the element hierarchy. This is quite
important, as the hierarchy is used to define the nesting of the displayed graphical elements.

Finally, try the command
xhide /data
to hide the form and its contents. Then use the xshow command to bring it back again.
The combination of xshow and xhide is useful for popping up and putting away menus and
graphs, as we have done in the simulations in Part | of this book.

12.4.2 Linking Elements with Messages

Now you have a soma and a graph, but you need some way of passing information from one
to the other. Interelement communication within GENESIS is achieved through a system
of links called messages. Messages allow one element to access the data fields of another
element. For example, to cause the graph to display the voltage of the soma you must first
pass a message from the soma to the graph indicating that you would like a particular data
field to be plotted. This message is established with the command

addmsg /cell/soma /data/voltage PLOT Vm *volts *red
The first two arguments give it the source and destination elements. The third argument
tells it what type of message you are sending. In this case the message is a request to plot
the contents of the fourth argument which is the name of the data field in the soma that you
wish to be plotted. The last two arguments give the label and color to be used in plotting
this field.

You can now run the simulation and view the results in the graph by giving the com-

mands

reset

step 100

210 Chapter 12. Introduction to GENESI S Programming

In order to plot another field in the same graph, just set up another message

addmsg /cell/soma /data/voltage PLOT inject *current *blue

reset

step 100
and you are displaying both the injection current and the voltage. If you type “step 100"
again without resetting, the simulation will continue on for another 100 steps and the results
will be off the scale of the graph. In the next chapter, you will learn how to set the scales
for the x-axis and y-axis of the graph. However, you may always interactively change the
scale for a graph axis by clicking the mouse on the axis and dragging it to higher or lower
values. Hitting the “a” key while the mouse cursor is inside the graph causes the graph to
automatically rescale to hold the plotted data.

Just as the showfield command allows you to examine the current value of data fields,
the showmsg command lets you determine what messages have been established between
elements. Both of these commands can be very useful when interactively debugging GEN-
ESIS simulations. For example, if you give the command

showmsg /data/voltage
after performing 100 simulation steps, it will produce the output

INCOMING MESSAGES

MSG 0 from ’/cell/soma’ type [0] ’PLOT’ < data = 74.6631 >
< name = volts > < color = red >
MSG 1 from ’/cell/soma’ type [0] ’PLOT’ < data = 5 >

< name = current > < color = blue >

OUTGOING MESSAGES

Incoming messages 0 and 1 correspond to the two messages that we sent to the graph, along
with the values of the accompanying parameters after 100 steps. There are no outgoing
messages from the graph. Try this command for /cell/soma and verify that its outgoing
message is consistent with the incoming message for the voltage graph.
You may remove messages with the deletemsg command. Try
deletemsg /data/voltage 1 -incoming

and use showmsg again to inspect the messages. Can you produce the same effect by delet-
ing the corresponding outgoing message from the soma?

12.4.3 Adding Buttons to a Form

The xbutton graphical element is often used to invoke a function when a mouse button is
clicked. Give the command
create xbutton /data/RESET -script reset

12.5. How GENESIS Performs a Simulation 211

This should cause a bar labeled RESET to appear within the “data” form below the “voltage”
graph. When the mouse is moved so that the cursor is within the bar and the left mouse but-
ton is clicked, the function following the argument -script is invoked. Now add another
button to the form with the command
create xbutton /data/RUN -script "step 100"

In this case, the function to be executed has a parameter (the number of steps), so “step
100” must be enclosed in quotes so that the argument of —script will be treated as a single
string.

At this stage, you have a complete GENESIS simulation that may be run by clicking the
left mouse button on the bar labeled RESET and then on the one labeled RUN. To terminate
the simulation and leave GENESIS, type either “quit” or “exit”. If you like, you may
implement one of these commands with a button also.

At this time, you should use an editor to create a script containing the GENESIS com-
mands that were used to construct this simulation. The script should begin with

//genesis
and the filename should have the extension “.g”. For example, if the script were named
“tutoriall.g,” you could create the objects and set up the messages with the GENESIS
command

tutoriall
If you have exited GENESIS and are back at the UNIX prompt, you may run GENESIS
and bring up the simulation with the single command

genesis tutoriall
In the following chapters, we will modify this script to create a more realistic model of a
neuron that may be incorporated into simple neural circuits.

12.5 How GENESIS Performs a Simulation

You should now have a complete working GENESIS simulation, assembled into a script.
Let us now examine what we have created and try to understand how it works.

Notice that, unlike a program in C, Pascal, or FORTRAN, there is no explicit looping
over time. Although the GENESIS script language has a for construct similar to that used in
C, itis not used for iteration over time. When a typical GENESIS simulation script is loaded
(or the commands are entered interactively) the Script Language Interpreter merely sets up
the simulation when it processes these commands. It does this by creating a number of
simulation elements, initializing internal data fields with the setfield command, and setting
up messages between elements. The iteration over time is performed implicitly when the
step command sets the simulation in motion.

When using the showobject command for a particular object type (a compartment
or xgraph, for example), you will notice that in addition to listing the data fields of the

212 Chapter 12. Introduction to GENESI S Programming

object and the types of messages that it may receive, it also lists the actions which that
type of object may perform. For example, most objects are capable of performing the
RESET and CHECK actions. When the reset or check command is given, each element
performs the version of the RESET or CHECK action that is appropriate for its object
type. Most GENESIS object types can perform the PROCESS action. This is the action
that is performed 100 times when you give the step 100 command to run the simulation.
When it is performed, each element that is capable of this action goes through one iteration,
checking for incoming messages and performing the computations necessary to update its
internal fields.

With this object-oriented arrangement, each element is responsible for knowing how
to perform its own actions, and affects other elements only by the exchange of messages.
This modularity makes it easy to modify your simulation “on the fly”, adding and deleting
compartments, ionic channels, or entire groups of cells, or changing variables to be plotted
with just a few commands or the click of a mouse button.

An xbutton object just responds to mouse clicks, so it doesn’t perform a PROCESS
action. An xgraph object interprets the PROCESS action by looking for incoming PLOT
or PLOTSCALE messages and plotting the data that they carry as a function of the current
simulation time. For a compartment object, “PROCESS” means to look for certain types
of incoming messages and to perform the calculations needed to update the Vm field. This
is done using the current values of its own data fields and any data accompanying incoming
messages.

In other chapters, you will be introduced to some of the types of messages that various
objects may receive. In general, the name of the message tells the receiving element what
to do with the data that are sent with the message. Sometimes a message is used simply
to set an internal data field of an element. For example, the INJECT message may be used
as a way to set the inject field of a compartment at each simulation step. This would be
used instead of the setfield command if we wanted to continously vary the current injection
during the course of a simulation. For example, a pulsegen object (a pulse generator) could
send its output state with an INJECT message to the soma, in order to provide pulses of
current injection, rather than the steady injection current that we used in this simulation.
You can find examples of this use of the pulsegen object in the inputs.g files that form part
of the Cable and Neuron tutorials.

Further details of the internal operation of GENESIS are given in the GENESIS Ref-
erence Manual chapter “Customizing GENESIS,” which describes how to create your own
objects.

12.6 Exercises

1. Add a button that will allow you to exit the simulation.

12.6. Exercises 213

2. Try some experiments with sending messages to /cell/soma, instead of setting the
Em or inject fields. You will need some element to send the message, and a field
value to be sent. An easy way to accomplish this is to use the x, y or z field value
of the /cell element. Although these fields are normally used for positioning the cell
in a network, they may be used for any purpose. Try setting the x field of /cell to 5
and the inject field of /cell/soma to zero. By using an INJECT message from /cell
to /cell/soma, can you produce results that are equivalent to setting the inject field
to 5? Does the message affect the actual value of this field? What does the EREST
message do?

214 Chapter 12. Introduction to GENESI S Programming

