WAM-BAMM '05

Parameter Searching in Neural Models Michael Vanier California Institute of Technology

Outline

- Defining the problem
- Issues in parameter searching
- Methodologies
 - "analytical" methods vs. stochastic methods
 - automated vs. semi-manual
- The GENESIS approach (*i.e.* my approach)
- Some results
- Conclusions and future directions

1) Defining the problem

- You have a neural model of some kind
- Your model has parameters
 - passive: RM, CM, RA
 - active: Gmax of channels, minf(V), tau(V), Ca dynamics
- You built it based on "best available data"
 - which means that >50% of parameters are best guesses

Defining the problem

- So you have a problem...
- How to assign "meaningful" values to those parameters?
- Want
 - values that produce correct behavior at a higher level (current clamp, voltage clamp)
 - values that are not physiologically ridiculous
 - possibly some predictive value

The old way

- Manually tweak parameters by hand
- Often large proportion of the work time of a modeler spent this way
- But we have big computers with plenty of cycles...
- Can we do better?

2) Issues in parameter searching

- How much data?
 - more data → easier problem (sort of)
- How many parameters?
 - larger the parameter space, harder the problem
- Are parameter ranges constrained?
 - narrower the range, the better (usually)
- How long to simulate one "iteration" of whatever you're interested in?

Neurons vs. Networks

- All these issues compound massively with network models
- Best approach to break it down into component neurons and "freeze" neuron behaviors when wiring up network model
- Even so is very computationally intensive
 - large parameter spaces
 - Iong iteration times

Success criteria

- If find useful parameter set...
 - params in "reasonable" range
 - matches observable high-level data well
- ...then conclude that search has "succeeded"BUT:
 - Often *never* find good parameter sets
 - Not necessarily a bad thing!
 - Indicates areas where model can be improved

3) Methodologies

- Broadly speaking, two kinds of approaches:
- a) Analytical and semi-analytical approaches
 - cable theory
 - nonlinear dynamical systems (phase plane)
- b) Stochastic approaches
 - genetic algorithms, simulated annealing, etc.

Cable theory

- Can break a neuron down into compartments which (roughly) obey the cable equation
- In some cases can analytically solve for the behavior expected given certain input stimuli
- But...
 - theory only powerful for passive neurons
 - need parameters throughout a dendritic tree
 - ideally want e.g. 3/2 power law rule
- How helpful is this, really?

Nonlinear dynamics

- Can take any system of equations and vary e.g. two parameters and look at behavior
 called a phase plane analysis
- Can sometimes give great insight into what is really going on in a simple model
- But...
 - assumes that all behaviors of interest can be decomposed into semi-independent sets of two parameters

Analytical approaches

- are good because they can give great insight into simple systems
- are often not useful because they are restricted to simple systems for all practical purposes
- Jim Bower: "I'd like to see anyone do a phase plane analysis of a Purkinje cell."

Analytical approaches

- In practice, users of these approach also do curve-fitting and a fair amount of manual parameter adjusting
- We want to be able to do automated parameter searches

Aside: hill-climbing approaches

- One class of automated approaches is multidimensional "hill climbing"
- AKA "gradient ascent" (or descent)
- Commonly-used method is conjugate gradient method
- We'll see more of this later

Stochastic approaches

- Hill-climbing methods tend to get stuck in local minima
- Very nonlinear systems like neural models have *lots* of local minima
- Stochastic approaches involve randomness in some fundamental way to beat this problem
 - Genetic algorithms
 - Simulated annealing
 - others

Simulated annealing

Idea:

- Have some way to search parameter space that works, but may get stuck in local minima
- Run simulation, compute goodness of fit
- Add noise to goodness of fit proportional to "temperature" which starts out high
- Slowly reduce temperature while continuing search
- Eventually, global maximum GOF reached

Genetic algorithms

- Idea:
 - Have a large group of different parameter sets
 - a "generation"
 - Evaluate goodness of fit for each set
 - Apply genetic operators to generation to create next generation
 - fitness-proportional reproduction
 - mutation
 - crossing-over

Genetic algorithms (2)

- Crossing over is slightly weird
- Take part of one param set and splice it to rest of another param set
 - many variations
- Works well if parameter "genome" is comprised of many semi-independent groups
- Therefore, order of parameters in param set matters!
 - *e.g.* put all params for a given channel together

Questions

- Which methods work best?
- And under which conditions?
 - passive vs. active models
 - small # of params vs. large # of params
 - neurons vs. networks

Parameter searching in GENESIS

- I built a GENESIS library to answer these questions
 - and for my own modeling efforts
 - and to get a cool paper out of it
- Various parameter search "objects" in param library

The param library

- GENESIS objects:
 - paramtableBF: brute force
 - paramtableCG: conjugate gradient search
 - paramtableSA: simulated annealing
 - paramtableGA: genetic algorithms
 - paramtableSS: stochastic search

How it works

- You define your simulation
- You specify what "goodness of fit" means
 - waveform matching
 - spike matching
 - other?
- You define what your parameters are
 - Ioad this info into paramtableXX object
- Write simple script function(s) to
 - run simulation
 - update parameters
- Until acceptable match achieved

How it works

- Scripts library of genesis contains demos for all paramtable objects
- Easiest way to learn
- I'll walk you through it later if you want

Some results

Models:

- active 1-compartment model w/4 channels
 - 4 parameters (Gmax of all channels)
 - 8 parameters (Gmax and tau(V) of all channels)
- Inear passive model w/ 100 compartments
 - params: RM, CM, RA
- passive model w/ 4 dendrites of varying sizes
 - params: RM, CM, RA of all dendrites + soma
- pyramidal neuron model w/15 compartments, active channels (23 params of various types)

Goodness of fit functions

- For passive models, match waveforms pointwise
- For active models, cheaper to match just spike times
 - hope that interspike waveforms also match
 - test of predictive power of approach

Results for 1-compartment model

- Upper traces represent results from model found by param search
- Lower traces represent target data
- Target data offset by -150 mV for clarity
- Each trace represents a separate level of current injection
- Resolution of figures is poor
 - blame Microsoft

Results for 1-compt model (4 params)

Results for 1-compt model (8 params)

1-compt models: conclusions

- 4 parameter model: SA blows away the competition
- 8 parameter model: SA best, GA also pretty good

Results for passive models

- Solid lines represent results from model found by param search
- Broken lines represent target data
- Target data offset by -2 mV
 - otherwise would overlap completely

Results for passive model 1

Results for passive model 2

Passive models: conclusions

- 3 parameter model:
 - SA still best
 - CG does surprisingly well
- 15 parameter model:
 - SA again does best
 - GA now strong second

Results for pyramidal model

- Upper traces represent results from model found by param search
- Lower traces represent experimental data
- Experimental data offset by -150 mV for clarity

Results for pyramidal neuron model

Pyramidal model: conclusions

- Spike times matched extremely well
- Interspike waveform less so, but still reasonable
- SA still did best, but GA did almost as well
- Other methods not competitive

Overall conclusions

- Non-stochastic methods not competitive except for simple passive models
 - probably few local minima in those
- For small # of params, SA unbeatable
- As parameter number increases, GA starts to overtake SA
 - but problem gets much harder regardless

Caveats

- Small number of experiments
- All search methods have variations
 especially GAs!
- We expect overall trend to hold up
 - but can't prove without more work

Possible future directions

Better stochastic methods

- *e.g.* merge GA/SA ideas
- for instance, GA mutation rate that drops as function of "temperature"
- other "adaptive SA" methods exist
- Extension to network models?
 - May now have computational power to attempt this
 - Will stochastic methods be dominant in this domain too?

Finally...

- Working on parameter search methods is fun
- Nice to be away from computer while still feeling that you're doing work
- Nice to be able to use all spare CPU cycles
- Good results feel like "magic"
- Probably a few good PhDs in this