
� �������	��
 ��

Building a Cell With Neurokit

DAVID BEEMAN

17.1 Introduction and Review

In the first four GENESIS programming tutorials, we covered the features of the GENE-
SIS/XODUS script language needed to construct a simple model neuron. This neuron con-
tains a dendrite compartment with a synaptically activated excitatory channel and a soma
with Hodgkin-Huxley sodium and potassium channels. A source of randomly distributed
spikes is used to excite the synapse. Action potentials produced in the soma trigger a spike
generator that may be used to provide input to a synapse on another cell. In our model,
we used a feedback connection to the cell’s own synapse that can be toggled on and off.
Enough details of XODUS were introduced to create graphs for the membrane potential
and channel conductance, along with buttons, toggles and dialog boxes for controlling the
simulation.

The previous programming tutorial used the readcell function to build the same neuron
from a data file. This is the preferred method for the construction of complex cells and
the exchange of cell models with other GENESIS users. The tutorial also provided an
introduction to the library of prototype cell components that are used with the Neurokit
cell builder. In this tutorial, we will use the same neuron as an example for the use of
Neurokit to construct a cell with a minimum of GENESIS programming. Although it is
not necessary to have worked through the programming details of the prevous five tutorials
before beginning this one, you should read through them in order to understand the model
that is being implemented here.

265

266 Chapter 17. Building a Cell With Neurokit

The Neurokit cell builder is a GENESIS simulation consisting of a main script Neu-
rokit.g and several other included scripts. These make use of the cell reader to create a cell
model, just as we did in the previous chapter. However, Neurokit also provides a graphical
interface for controlling the simulation, modifying the cell model, stimulating the cell with
various types of input, and displaying the value of fields in the various compartments.

In order to recreate our simulation with Neurokit, we need files for the cell reader similar
to the ones that we used in the previous chapter. We will again use a cell descriptor file
cell.p. We also need the scripts compartments.g, hhchan.g, synchans.g and protospike.g in
the neurokit/prototypes directory. Again, these will be used to create the prototype elements
from which the cell will be constructed. As before, we need a script that includes the above
scripts and uses them to create the prototype elements under a neutral /library element. In
the previous chapter, we chose to call this file protodefs.g. Neurokit requires that this file
be called userprefs.g. It performs the functions of our protodefs.g file, plus a few others
described in the following section.

Before beginning this tutorial, you should also familiarize yourself with Neurokit by
running one of the Neurokit-based simulations described in Chapter 7. Alternatively, you
might run the simulation in the Neurokit directory (Scripts/neurokit), using the camit.p cell
parameter file which is found there. Try out some of the features that are described in the
README file, which is available as the on-line help. If you wish to explore the chan-
nel editing capabilities of Neurokit, you may run the tutorial in Scripts/channels. Channel
editing with Neurokit is also treated in a following chapter, in Sec. 19.2.2. Note that the
Neurokit � �������	��
��� �� menu choice only refers to voltage-dependent ionic channels, and
not to synaptically activated channels.

17.2 Customizing the userprefs File

When Neurokit is run, it begins by assigning default values to a number of global variables
called user-variables. These variables are defined in the Neurokit directory file defaults.g,
and are responsible for the initial values of most of the Neurokit dialog boxes, scales for
graphs, and a good deal of what you see on the screen. Although you may wish to examine
defaults.g, it should not be modified. Next, Neurokit looks for a file called userprefs.g. This
file is responsible for creating the prototype elements in the library and for making any
desired changes in the user-variables that were set in defaults.g. Unless you are running
the example camit (CA mitral cell) demonstration simulation from the Neurokit directory,
you will want to run Neurokit from another directory that contains your own customized
userprefs file and your own cell parameter file. Typically, you will have a .simrc file that
has set a path to the Scripts/neurokit and Scripts/neurokit/prototypes directories, so that this
may be done. If the userprefs file is not found in the directory from which Neurokit is being
run, the default userprefs.g in the Neurokit directory is used. This file, shown in Fig. 17.1,

17.2. Customizing the userprefs File 267

may be used as a model for the construction of your own userprefs file. To illustrate this
customization, we will go through the file, making the changes needed to construct our
model neuron. If you are feeling impatient, you may consult the resulting userprefs.g listing
in Appendix B. However, you will gain the most from this tutorial by developing the file
piece by piece as you work through the tutorial.

17.2.1 Step 1

The first step is to include the scripts that define the functions to be used to create the
prototype elements. In Chapter 19, we will create our own prototype channels. For now,
we will build our neuron with channels that we can find in the prototypes directory. The
neurokit/prototypes/LIST file provides a summary of these.

We need compartments (defined in compartments.g), sodium and potassium Hodgkin-
Huxley channels (defined in hhchan.g), an excitatory synaptic channel (a synchan object),
and a spike generator like the one we used in the previous tutorial. We can find the latter
defined in protospike.g. In Fig. 17.1, the file mitsyn.g defines functions for creating both
an excitatory channel (make glu mit upi) and an inhibitory channel (make GABA mit upi).
Note that, unlike the names in our “generic” synchans.g file, the prototype channel names
follow the convention recommended in the neurokit/prototypes/README file. For example,
glu mit upi is a glutamate-activated mitral cell channel, authored by Upi Bhalla. In general,
you should look for a file that defines a prototype closest to the one you need. In some cases,
it may be necessary to modify an existing file to produce the desired prototype, or to change
the default field values, once the prototype is created. For our model, we can use the file
synchans.g, which has exactly what we need. Thus, the first section of our userprefs file
will be fairly similar to that of the default version and to the statements given in Sec. 16.2.2.
It will contain the statements:

���������
	������������������������������������� �����!�"�
����	�����	#�����������$�"���������%���
���������
	��'&�&���&���� �
�(������� �����*)���	�+$,��-��.�)���/
����0(1�2��3�"	 4
�5����	*67��&����������
�����
���������
	����0�����&������ ����������� �����!�"0������������ ��&
���$�����������
���������
	��'�$�
���
�����3��,
� �����������(8$&3����&'����,
���(�9���3��,
��+
�������
�������#���

17.2.2 Step 2

Neurokit begins by creating a neutral element /library to contain the prototypes, so our
second step should be to change to this element and execute the functions that will create
the desired prototype elements. However, we should first consider what we need to do
in order to properly set the values of the internal fields of these prototypes. In the case
of compartments, all the relevant fields can be set from information contained in the cell
parameter file. For channels, the maximum channel conductance is the only field that is
determined from the cell parameter file. Neurokit allows some other fields to be set from

268 Chapter 17. Building a Cell With Neurokit

�$�(+
���
�������(. 	������������������$�
��,����
�������������
������� +%�������
����&
����������+5	�������������������� ���
���$���
�����������

�$� 1��
�����(.	�-�������
	�����+#�$���������5���������%�����5���
���
���$0��
�'���$���"���������
�
�'�������5�$��� ���
���
	�����	�����
�����$�����������'���
���������
	��*�����������������������
�
�'�������5�$���)���	�+$,��-��.�)���/
����0(1�2��3�"	�4������	567��&����$�����
� ���
���������
	��%&�&���&����
�
�'�������5�$���
�$�3��� � � ���$�
���*���$�$���&����$�
���
� ���
���������
	�� � ������&����
�
�'�������5�$���
�$�3��� � � ���$�
���*���$�$��"0������$����� ��&����$�����
�(���
���������
	�� � �����"0��

�$� 1��
����#.	�-���
��,��-��+ ���$���"��������� �
�%����,
�(���
���
���$0��
���������&��*�$�
�����
����05�������������
�$����&��5�$�����$�
���$0�$� ����,
�5���$�#����������2������������������������ �-�#��&
��
�����
����0

�
���
��,�� ��&��!���
���
	�����	(�$0��
���(���9�����������$�������$���(���
����,����
�"0��
���
	��
�������
������������� �
� ����,��������������
���$����������� ���
����,����
���$&
���
���
�������
������������� �
� ����,��������������
���$�����������
����&
���$��� ���
����,����
�"0��
���
	��
��0�� �����
�����$�������$� �
� ����,��������"0�� ����������������������� ���
����,����
���$&
���
���
��0�� �����
�����$�������$� �
� ����,��������"0�� ����������������������������&����
��� ���

�
����&��
���5���
�#�������#�"�����
	����$	#��&����$�
���
� ������	!��� � �#���������5���
����,�����4
������2��3�"	���&$& �
� ����,������-4
���
�"2��3�"	��"&$&�� ���
����,�����6��
�"2��3�"	��"&$& �
� ����,������-6��
��2��3�"	���&�&�� ���
����,�����4
���-� ������&�& �
� ����,������-4
����� ������&$&�� ���
����,�����6���� ������&$& �
� ����,������-6���� ������&$&�� ���

�
����&����
�5���
�#�������#�"0������������ ��&����$�
���
� �����*��&��'� ���$�
���*�����$����
����,�����+�������� �����"�$�3� �
� ����,������-+����!�-� ���������3��� ���
����,����#"%$%&�$���� �������$��� �
� ����,�������"%$%&�$���� �����"�$�3��� ���

�����
� ���(�
���������3�-��+��
� ��&����
�$���#�$���������$�9���

�$� 1��
����'#.*1����$�����$+(���
���$���
��������� �����*��������.(�
�������(���������
���������
�"0��$�$0������*)+�-+����!�-� ���������3���
���������
�"0��$�$0�����,)+��"%$%&�$���� �����"�$�3���

Figure 17.1 The userprefs.g file for the default Neurokit simulation. For brevity, some of the comments have
been removed.

17.2. Customizing the userprefs File 269

dialog boxes, but many would have to be changed, using the GENESIS setfield command,
if the desired values are not set when the prototypes are created. Thus, we should examine
the channel creation functions in order to see what changes we might need to make within
the userprefs file.

Looking at the listing for hhchan.g in Appendix B, we see that it makes use of the
global variables EREST ACT, ENA, and EK to define the resting potential and the Na and
K equilibrium potentials. The functions make Na squid hh and make K squid hh use these
values when creating the channels. If they are not the values we want, we should modify
them within userprefs.g. This should be done at a point after the script is included, but
before the functions are invoked. As the default values had been modified from the original
Hodgkin-Huxley squid values for use in a mitral cell simulation, we will need to change
them to the proper values, as we did in Chapters 14 through 16. (You may note that hhchan.g
assigns a value to a fourth global variable, SOMA A. Why may we leave this as is?)

As in the protodefs.g file from the previous tutorial, we can use the make Ex channel
function to create the glutamate-activated channel Ex channel with all the proper default
field values. Although it isn’t used by the cell model that we are going to create, we might
as well put a GABA channel Inh channel in the library, in case we want to edit the cell to
include it later. Chapter 15 describes how a spike generator linked to the soma may be used
to translate somatic action potentials to presynaptic neurotransmitter release. As before, we
will use the make spike function in protospike.g to create an element named spike with a
unit amplitude and an absolute refractory period of 10 msec. Thus, the second section of
userprefs.g contains:

�$����&��*�$�����$�
���$0
����,
���
�"0
�����
	��������������$�"�����$� �
� ����,���� �������
�����$����������� ���

�
� $��$�$��+��!�������9�������"�
������� �
�*�#�
���$���"	��%��&������(������	9���*&$&���&���� � +9���
����� 1#���($��%�)#.�� ����� �$���
���"������+%���������
����� �����
���$�������
	 �
���������
� 4%$)�� ������ �$�#����	��-���!��2��3�����������-���5�����
�������"���
� 6)9.�� ������ �$�(�����
�
�$�������#��2��3���
�����������5���������������$�

����,
����4
���
��2��3��	���&$& �
� ����,
�����-4
���
��2��3��	���&$&�� ���
����,
����6�����2��3�"	���&$& �
� ����,
�����-6�����2��3�"	���&$&�� ���

����,
��� � /��
��&���������� �
���0�����&���� 83����& � ,)�� �������� �������)*������)�'%� ���
�*���
����,
��������&!�
��&����$��� �
���0�����&������ � ,)9.�� �������� �
�����)5�
����) ��'� �����5���

����,
���
������,
� �
������,
�5�!���3��,
��+
���
���
���
���5�������������#���

������� �
�(�����������5���5��&
� ���$����������������9���

Of course, one does not have to rely on the functions that are defined in the neu-
rokit/prototypes files. Neurokit sets the SIMPATH to include “./prototypes”, so you may

270 Chapter 17. Building a Cell With Neurokit

have your own prototypes directory with scripts containing your own function definitions.

17.2.3 Step 3

The final step is to make any needed changes in the user-variables from the values given in
defaults.g. Although most of these may be set from dialog boxes within Neurokit, it is far
more convenient to have Neurokit start up configured for the simulation that you want to
run. In this part of the tutorial, we will set some of the more common user-variables.

The Neurokit � � � � menu contains default values for the name of the cell to be created
and the source file name (the cell descriptor file) that will be loaded when you click on ���
 �
�������	� � � � . In Chapter 16, we created a cell called /cell from the file cell.p, so we will start
with:

�� ���� � ��������� � �����

�� �������� � � ����� � � ��������

The �
 � � � �� selection brings up a ��� �!���"#$�&%('*)+%('�#�,-%&�/.�"'+0�� form with dialog
boxes for many parameters that we will want to customize for our simulation. Figure 17.2
shows the display that is produced with the camit simulation. It would be best to run
Neurokit as you read through this tutorial. If you do this with the userprefs file you have
created so far, you will be able to experiment by changing the dialog boxes by hand as you
edit your userprefs file to change the user-variables. The parameters that we are most likely
to want to change are the run time, the simulation time step (

� ��� � 1), and the number of
steps between update of the graphs (� ���� � � � �
 ��� �(�). In the previous tutorials, we ran the
simulation for 100 msec, using a time step of 0.05 msec. We can save some execution time
by plotting the graphs every five simulation steps, instead of plotting at every simulation
step. These values may be set with the statements:

�� ����&�
 � � � � �2�435�76

�� ���� � � �483�+9�: �+�/35�;3�8<� � � �

�� ����&� ���� � � � �=8

We will also need to modify some variables that appear in the dialog boxes under the
0+��0�)(#�,-%&.�>+?����&%(��%@�? heading of the ��� �!��+"�#$�&%('/)�%('�#�,�%(�/.+"�'+0�� . Some of these dialog
boxes appear and disappear according to the type of stimulation that is applied to the cell.
Table 17.1 lists the types of stimulation, the dialog box labels, and the associated user-
variables.

We will experiment with the values of most of these later on in the tutorial. You may
assign reasonable initial values to these in the userprefs file now, or may do it later after
having gained some experience with the simulation. In the earlier tutorials, we found that
0.3 nA was a good value to use for the injection current, so you may set user inject to
this value now. The two boxes labeled

� � � ��1 � � � �$6 and
� � �� 1 � ��� ��A obtain their values

17.2. Customizing the userprefs File 271

Figure 17.2 The Neurokit SIMULATION CONTROL PANEL form.

when you click on a compartment in one of the two Cell Windows, for either recording or
stimulation. Finally, there is a dialog box labeled ��� � #����� . This contains the name of the
channel that will be used for one of the three forms of synaptic stimulation. The contents of
this box may be set by hand, or by clicking on one of the two buttons to the left. We can set
the labels of these buttons to the two available synaptically activated channels by including
the statements

�� ���� � � � � �(��� 6 ���70���� � ��
��� � ���

�� ���� � � � � �(���+A2��� � �� � � ��
 � � � ���

in the userprefs file, as was done in the default userprefs file for the camit simulation.
There are also one or two Cell Windows that each contain a diagram of the cell and a

graph with axes scaled appropriately for the quantity to be plotted. The simulation that we
are trying to recreate had a graph to plot the soma membrane potential, and a second graph

272 Chapter 17. Building a Cell With Neurokit

Stimulation Dialog Box Label User-variable
Iclamp Inject (nA) user inject
Vclamp Clamp voltage (mV) user clamp
Syn act Amount of synaptic activation user activ
Syn spike Weight of spike user spike
Syn rand Spike rate (Hz) user rate

Spike weight user weight

Table 17.1 The dialog boxes and user-variables associated with the various types of stimulation that may be
applied to the cell.

to plot the conductance of the excitatory channel. We can specify the axis scaling for these
two graphs to be the same as we used before, if we add the statements:

�� ���� �&� � � 6 �49�3 �76

�� ���� �&�
 ��6 � 35�;3�8

�� ������ �
 ��6 � 35� 6

�� ������ �
 ��A2� 35� 6

�� ���� �&� � � A2� 35�;3

�� ���� �&�
 ��A2�48 �+9 �

We also need to use the user numxouts variable to specify that two graphs will be shown,
and we need to specify what will be plotted in each graph. The defaults.g file specifies
values of “ � � ” and “ � ” for the user-variables user field1 and user path1. This means that
the Vm field will be plotted for the compartment that is selected for recording in the first
Cell Window. This is just what we want for the first graph. However, these same defaults
are also specified for the second graph. For our second Cell Window, we would like to be
able to plant a recording electrode in the dendrite compartment and plot the conductance
Gk of the excitatory channel Ex channel. We can make these changes with the statements:

�� ���� �
 � ���
 � � �=A

�� ����(� � � � � A ��� @ 1 �

�� ������
 � � A2���70���� �	��
��� ����

There are also � �
 � � buttons that will bring up menus to change the representation
of the cell which is shown in each window. The Neurokit README and defaults.g files
provide information on the variables that appear in these menus. Most of these correspond
to fields of the xcell widget, as described in the GENESIS Reference Manual. For now, we
will use the default values.

17.3. The Cell Descriptor File 273

17.3 The Cell Descriptor File

The format of the cell descriptor file was discussed in Chapter 16, so you may wish to
review that section of the tutorial. For our simulation under Neurokit, we can use the same
cell.p file.

You should recall that the cell reader uses the “ � � � � � ����� � �
 �
 � ” option to specify
its own internal variables CM, RM and RA in the cell descriptor file in order to calculate the
fields Cm, Rm and Ra from the compartment dimensions, ignoring any initial values set in
the prototypes. The Em and initVm fields are similarly set from the EREST ACT variable.
The ELEAK variable may be used if it is necessary to set a different leakage potential for
Em. Also, the maximum conductance for a channel is set from the dens parameter and the
dimensions of the parent compartment, overriding any value set in the prototype. However,
all other channel parameters remain the same as those in the prototype library. Fortunately,
Neurokit provides dialog boxes for changing many of them.

17.4 Some Experiments Using Neurokit

Now that you have a customized userprefs.g file and a cell.p file, you are ready to try some
experiments with Neurokit. You should run GENESIS from the directory that contains these
files, and then type “ ' �
 ��� 1 ��� ” to the GENESIS prompt. If all is well, the Neurokit title bar
should eventually appear at the top of the screen. If GENESIS cannot find Neurokit, make
sure that your .simrc file has properly set the SIMPATH. If you get fatal errors during the
loading of userprefs.g, look for syntax or typographical errors in this file. Once Neuorokit
is running, click on the � � � � option on the title bar. (As usual, when we say “click on . . . ”
we mean “click the left mouse button on . . . ,” unless another button is specified.) Next,
click the ���
 � ���� �	� � � � button on the � � � � menu, and then click �
 � � � � � on the title
bar. You should see the ��� ��!���"#$�(%&'*)+%('+#,-%&�/.�"'+0+� with the timing parameters you
provided and two Cell Windows with properly scaled graphs.

Initially the 0��+0�)#�,�%(.>�?����(%&��%@? buttons will show that you are ready to plant record-
ing electrodes. Click on the soma in the first Cell Window and on the dendrite in the second
Cell Window. The two

� � � ��1 � � � � dialog boxes should now show “ � � � � �+� � ���
 ” and
“ � � � � �+� � � � � ”.

As a start, let’s do a simple current injection experiment to make sure that the soma
compartment is working properly. After clicking on � � �
 ��� , you should see a dialog box
showing that the injection current is 0.3 nA. Click on the soma in the first Cell Window
to plant an injection electrode. Now click on �
 � in the ��� ��!��+"�# �(%('/)�%&'+#�,�%(�/.+"�'�0+� .
After you have satisfied yourself that this provides the expected action potentials, remove
the injection electrode by clicking on the soma with the middle mouse button and click on
� � � � � to clear the graph.

274 Chapter 17. Building a Cell With Neurokit

We are now ready to try applying synaptic activation. We will start by using mouse
clicks to deliver spikes to the Ex channel channel. This channel name should be displayed
in the ��� � #��(��� dialog box. If not, the name can be entered in the box “by hand”, or by
clicking on the button labeled “ 0 � � ��
 � � � � ” at the left.

First, click on the � � � � � ��1 � button under the 0+��0�)#,-%&.�>�?����&%(��%(@�? heading. Note
that the �-%�! �&0 display at the top of the two Cell Windows now shows that the left button
is labeled “ ��� � � � ��1 � ” and that the middle button is labeled “ ! � ��� ��1 � ”. Unless you have
changed the user spike variable in the userprefs file, the

� � ��� � � ��� � � ��1 � dialog will
show the default value of 1.0. The maximum conductance (gmax) of a synaptically activated
channel is reached when a spike with a unit amplitude is delivered to the channel, so this is
a reasonable amplitude to use.

Now, click on �
 � in the ��� �!��+"�#$�&%('/)�%('�#�,�%(�/.+"�'+0�� . After the membrane potential
has leveled off to about � 70 mV , click on the dendrite compartment in the second (right)
Cell Window. You should see a nearly linear rise of the channel conductance, followed
by an exponential decay with a time constant of about 3 msec. Try clicking several times
rapidly in succession, in order to let the conductance and postsynaptic potential build up to
a level sufficient to create an action potential in the soma. In order to check the consistency
of these results, we can inspect the channel parameters by selecting � ��� � � ��� from the
top menu bar.

Click on the dendrite compartment in the Cell Window (lower left) and then on the
Ex channel channel in the Compartment Window (upper right). The Parameter Window
should display the dendrite dimensions and the maximum channel conductance in S � m2. Of
course, gmax can also be found by typing “ � � ����� � � � � � � � ���� � � ��� �(0�� � ��
 �� � � � �
 � ”
to the GENESIS prompt. Verify that this agrees with the maximum conductance provided
by a single spike.

In order to deliver spikes at random intervals, select �
 � � � � � again and click on ��� �
�
���� in the 0+��0�)#,-%&.�>�?����&%(��%(@�? menu. Dialog boxes will appear for both ��� ��1 � �
 � �
and � � � 1 ��� � ��� � � . Try a spike rate of 200 Hz, and leave the weight at 1.0, as before.
The left and middle mouse buttons will now be labeled “ ,
 � � ��� � ” and “ ! � ,
���� ”. Click
the left button on the dendrite compartment in Cell Window 2, and then run the simulation.
Repeated runs (after � � � � �) will continue to deliver random spikes until you click the
middle button in the Cell Window 2 dendrite compartment. (Note that switching to another
form of input to the neuron, such as � � �
 ��� or ��� � � � ��1 � , will not remove the random
spike input unless you first use the middle button to remove the input.)

The � � �
 ���
button delivers a constant synaptic input. Using the default value of 1000

for the "��$�
 � � ��� � � ��
 � � � �
 ��� �	�
 � � � � , run the simulation and click the left button
in the Cell Window 2 dendrite compartment. Note that the channel conductance levels off
at about 4
 0 � 10 � 9 siemen. Can you explain why? Be sure to use the middle button to
remove the activation when you are through.

Now, how about the feedback connection that we used in Chapters 15 and 16? Neurokit

17.4. Some Experiments Using Neurokit 275

was designed for single cell modeling, without connections between the cells, so we will
have to enter some additional GENESIS commands in order to make the connection. As
we want to make a synaptic connection between the spike generator and the Ex channel
channel, we enter a command at the GENESIS prompt to send a SPIKE message to the
channel:

 � � � � � � � � � �+� � ���
 � � � � 1 ��� � � ���� � � ��� �(0���� �	��
��� �� �(. ����0

We also need to assign a synaptic weight and a delay for propagation along the axon.
In the previous tutorials, we used a weight of 10 synaptic connections and a delay of 5
msec. We also need to set some parameters for the spike generator. The cell parameter file
only lets you set the threshhold for the spike generator. We also need an amplitude and an
absolute refractory period. As with our previous implementations of this cell model, we
want to give each spike a unit amplitude and to give the spikes an absolute refractory period
of 10 msec. Thus, we need to give the additional commands:

� � � � � � � � � � � � �+� � � � � �(0���� � ��
��� � � � � ��
 � � ���;3�� � � � ��� � � 6�3 � 3��
� � ��
 � � ��� 3	�5� � ��
 � 3 � 3�3�8

� � � � � � � � � � � � �+� � ���
 � � � � 1 ���
 � �
 � �
 ��� 6
�
 � �(� �����
�� � 35�;3$6 3

By using showfield to find the number of synaptic connections to Ex channel, you
should verify that the index “0” is the proper one to designate this synaptic connection.
After entering these commands, perform the � � � �
 ��� experiment again. You should no-
tice that after the first action potential occurs, the feedback produces a continous stream of
action potentials, as in Chapters 15 and 16. As we did in these tutorials, we can delete the
connection with the command

� �� � � ��� � � � � � ���� � ���
 � � � ��1 � 3 9�
 �

So far, we have done nothing with the inhibitory synaptic channel that is lying dormant
in the library. Use � ��� � � ��� to paste in the Inh channel channel. Use the cell parameters
form to set the maximum conductance to the same as that of the glutamate channel. Select
this as the ��� � #��(��� and inject some current to the soma in order to get the cell firing.
We would like to deliver some activation to this channel to prevent the cell from firing.
However, we would also like to see a plot of the conductance from this channel instead of
that from the glutamate channel. This can be changed with the � �
 � � button at the top of
Cell Window 2. Change the � � � � � �
 � � dialog entry to “ � �� � ��
��� � � ”. Now use either
��� � � � ��1 � or ��� � �
���� to inhibit the firing that is produced by the current injection.

276 Chapter 17. Building a Cell With Neurokit

17.5 Exercises and Projects

1. In the simulations of Chapters 15 and 16, we had a toggle button to allow us to
add and delete the feedback connection between the axon and the excitatory synap-
tic channel. Here, we had to resort to the rather awkward expedient of entering
long GENESIS commands. Will Neurokit allow us to extend its capabilities and
build in the feedback connection along with a toggle to take it in and out? Can
we have dialog boxes to enter the value of the weight and delay parameters for the
synaptic connection? Fortunately, the answer is “yes.” The �
 � �
 �
 ����� � but-
ton in the ��� ��!���"#$�(%&'*)+%('+#,-%&�/.�"'+0+� will invoke a user-supplied function called
do paradigm. The definition of this function and the statements needed to create a
form with the needed dialog boxes and toggle can reside in a supplementary script
that is brought into the simulation with the include statement. This may be done in
your userprefs file or may be done at the GENESIS prompt after your simulation has
been started. The demonstration simulation in Scripts/vclamp provides an example
of such a paradigm file. For another example, take a look at the script I plots.g from
the Burster tutorial of Chapter 7. Use this information to write a function that will
cause the �
 � �
 �
 ����� � button to toggle the feedback connection on and off.

2. There are a number of experiments that one can do with just a “naked” soma in or-
der to study the effects of various types of voltage-activated ionic channels. Modify
your cell.p file to create just this simple soma with the two Hodgkin-Huxley chan-
nels. Also modify your userprefs file to put a non-inactivating muscarinic potassium
current (the “M-current”) in the library. The conductance may be created with the
function make KM bsg yka in the neurokit/prototypes file yamadachan.g. This file
contains functions to create several conductances that were used in a model of a bull-
frog sympathetic ganglion neuron by Yamada, Koch and Adams (1989).

Start by calculating and making a plot of the current-frequency (f-I) relationship of
a standard Hodgkin-Huxley patch of membrane (i.e., containing only the Na and
K channels). That is, inject a constant amount of current for, e.g., 200 msec, and
plot the resulting frequency of spikes versus the amplitude of the injected current.
Reduce the potassium conductance and describe how the f-I curve changes. Next,
use � ����� � ��� to paste in the M-current channel and recompute the f-I curve. How
does it change? Note that even if very large input currents are applied, the spiking
frequency will not become arbitrarily large. What underlying parameter limits the
spiking frequency?

3. In Chapter 7 (Sec. 7.3.2), we briefly mentioned a low threshold calcium current that
contributes to burst production in thalamic relay cells. The file THALMODES.g in
the neurokit/prototypes directory implements the channel models that are described

17.5. Exercises and Projects 277

by McCormick et al. (1992). Use these channels to create a single compartment
bursting thalamic relay cell model.

4. Try to recreate the results obtained by Connor and Stevens (1971c) for their model of
Anisidoris gastropod neurons. The channel prototypes are contained in CSchan.g.

5. If you have worked through the programming of the tutorial in Chapter 15, you may
be interested in doing some “snooping” beneath the surface of Neurokit. While the
simulation of our simple cell is running with � � � �
 � selected for synaptic input to
the Ex channel channel, use the showfield and showmsg commands to discover how
the input is provided to this channel. How does this compare with the way that the
random input was implemented in Chapter 15? What connections or messages are
used to provide the � � ��
�� �

option?

278 Chapter 17. Building a Cell With Neurokit

