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The Network Within: Signaling
Pathways

UPINDER S. BHALLA

10.1 Introduction

In the preceding chapters, we have taken the building blocks for neuronal models in the
form of ion channels, membrane compartments and synapses (Chapters 4, 5 and 6) and put
them together to form neurons, small neural circuits, and then networks (Chapters 7, 8 and
9). We conclude this section of the book by opening the lid on the building blocks, and see-
ing what happens inside them. There used to be a view of the atom as a tiny solar system,
which led to exotic visions of an infinite series of ever-decreasing worlds as one examined
matter at finer and finer scales. Neurobiology now has to face a similar unsettling concept:
that hidden within “atomic” compartments and under all the ion channels, there exists a
whole new universe of subcellular networks. These networks, of course, are the multitudes
of interacting biochemical signaling pathways. They profoundly affect everything from the
properties of single channels to the morphology of neurons and the wiring of the brain it-
self. Recent work on biochemical signaling reactions has emphasized the sheer complexity
of these networks. There are dozens of known major signaling pathways, each having at
least five to ten enzyme isoforms, each of which communicates with a different subset of
other messengers and pathways. As with neuronal networks themselves, these biochemical
networks cannot be analyzed in isolation. Neuronal signaling events from above, and nu-
clear and metabolic events from below, provide a barrage of signals that this network must
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process.
What role do signaling pathways play in the life of a cell? In a word: everything.

Metabolism, cytoskeleton formation, gene regulation, response to external inputs, differ-
entiation, cell cycle, synaptic computation — all these operations are in the domain of
signaling pathways. Consider a large industrial chemical complex. The control system for
such a system is typically a huge computer, with hundreds of control points and sensors.
A living cell is a chemical system whose complexity is orders of magnitude beyond any-
thing man-made, and its control systems are correspondingly complex. Although a lot of
the “software” is encoded in DNA, the role of “hardware” (more properly, “wetware”) is
carried out by biochemical pathways.

The goal of this chapter is to introduce you to biochemical computation, with particular
emphasis on aspects important for neurobiology. These include gating and modulation of
ion channels, signaling by diffusible and retrograde messengers, and the myriad processes
involved in long term potentiation (LTP). After a brief introduction to a few major pathways,
the chapter covers some of the theory underlying biochemical models. The second half of
the chapter describes the specifics of building such models using GENESIS and Kinetikit.

10.1.1 Nomenclature

A signaling pathway, in the sense I employ it, is any series of reactions that manipulate
information of importance to a cell. This definition is rather broad, and might, for instance,
be considered to include metabolic regulatory pathways that do not have much to do with
the outside world. We are mostly concerned with pathways that do involve interaction with
external events, particularly neuronal events.

It is sometimes difficult to decide where one pathway ends and another begins. I will
use the term pathway to describe a group of reactions influencing a single signaling en-
zyme. In this sense, then, the classical cyclic AMP pathway shown in Fig. 10.1 (Gilman
1987) consists of at least four pathways: the receptor-ligand pathway, the G protein activa-
tion pathway, the adenylyl cyclase pathway, and the protein kinase A activation pathway.
Another way of looking at it is to consider a pathway as a node at which information can
converge, be processed, and sent on to multiple other nodes.

The term second messenger is typically used for a small signaling molecule (i.e., not
a protein) that is produced indirectly through the action of some primary messenger such
as a neurotransmitter. Examples are cAMP (cyclic adenosine monophosphate), DAG (di-
acylglycerol), IP3 (inositol 1,4,5 triphosphate), AA (arachidonic acid), and, of course, Ca
(calcium). Given the proliferation of interactions among signaling pathways, it is some-
times difficult to decide if a given molecule is a second, third, or nth messenger. We will
apply the term to most small non-protein signaling molecules.

The term signal transduction will be applied in a restrictive manner to receptors that
change or transduce one signaling modality (such as light) to another, such as biochemical
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Figure 10.1 The cyclic AMP pathway. In this chapter we treat it as four successive pathways: (1) activation
of the β-adrenergic receptor, (2) activation of the G protein Gs, (3) activation of adenylyl cyclase, and (4)
activation of protein kinase A. This pathway was one of the first to be examined in detail, and incorporates
many of the interactions subsequently found in other pathways.

signals. In this sense a Ca channel is a sort of signal transduction mechanism, but the more
specific term ion channel will be used in this case. Receptors will be used to describe
proteins that detect neurotransmitters, usually at a synapse.

10.1.2 A Short Short Course in Biochemistry

This little section is meant for non-biologists and should be skipped by anyone who has sur-
vived a modern biology course. Any of the standard textbooks on biochemistry or molecular
biology of the cell are recommended reading (e.g., Alberts, Bray, Lewis, Raff, Roberts and
Watson 1994, Kandel, Schwartz and Jessel 1991).

DNA (deoxyribonucleic acid) is the genetic material of the cell. It encodes information
in the sequence of four chemical building blocks called bases. These are labeled A, T, C
and G.

A protein is a chain of amino acids (another building block). There are 20 amino
acids. The sequence of amino acids is specified by DNA, and in turn determines the three-
dimensional structure and biochemical properties of the protein. Proteins frequently asso-
ciate in pairs to form dimers, or triplets (trimers), or larger numbers (multimers).

An isoform of a protein is another protein, with a different but usually closely related
sequence. Isoforms usually have similar enzymatic properties, but may be regulated differ-
ently.
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An enzyme is a protein with catalytic activity. It speeds up reactions. Enzymes usually
exhibit great specificity in their substrates, the molecules they act upon, and also in the
products they generate.

ATP (adenosine triphosphate) is the major source of chemical energy in the cell. The
removal of one or two phosphates from ATP releases energy. This reaction is called hydrol-
ysis. GTP (guanosine triphosphate) is a chemical cousin of ATP, and shares its energetic
properties but is not involved in as many reactions in the cell.

A protein kinase is an enzyme that adds a phosphate from ATP to an amino acid on
a protein. This process is called phosphorylation. The added phosphates frequently mod-
ify the activity of the target protein, which makes this a process of great importance for
signaling.

A phosphatase reverses the action of a kinase: it removes the phosphate group.

Buffering is a way of holding the free concentration of a given molecule close to a
desired set point by a suitable combination of chemical sources and sinks for the molecule.
It is most commonly used for holding the pH, that is, the acidity, of a solution at a desired
level.

10.1.3 Common Signaling Pathways

Regrettably, this section looks rather like an alphabet soup. It can be skimmed through on a
first reading, but it is actually the barest of introductions to the topic. Anyone contemplating
research simulations on signaling will need to go into much greater breadth and depth than
this incomplete list. You should assume that there are tens of known examples in each
category, each of which has tens of known isoforms. You should also be aware that the field
is in an exponential growth phase: new isoforms are reported almost daily, and entirely new
pathways and signaling mechanisms turn up every few months.

Receptors

These collect information from outside the cell, and couple it into intracellular pathways.
There are two main subclasses of receptors. Ligand-gated ion channels are directly gated
by receptors such as the familiar NMDA receptor, and pass signaling ions such as calcium
into the cell when suitably stimulated by the presence of a ligand. G protein coupled recep-
tors, such as the beta-adrenergic receptor, belong to a second category that gates channels
indirectly. These receptors activate G proteins when stimulated by ligands. The G protein
may then either modulate channel activity by binding directly to the channel, or regulate
the activity of an enzyme involved in a second messenger pathway that modulates channel
activity.
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G Protein Pathways

The term G protein refers to proteins that bind guanine nucleotides, such as GTP. There are
at least four different major G protein families, Gs, Gi, Go, and Gq. Gt (transducin), in the
visual receptor pathway, is a G protein in the Gi family that is stimulated by light. As usual,
each family has five to ten known isoforms. These trimeric, membrane-associated signaling
proteins contain α, β, and γ subunits. The β and γ subunits have their own sets of isoforms,
so there are plenty of permutations. Only a small fraction of these are believed to occur
in nature. Activated α wanders around on its own, activating further pathways, but the βγ
complex remains dimerized. The prototypical G protein reaction is shown in Fig. 10.2.
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Figure 2: G protein signalling cycle.
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Figure 10.2 G protein signaling cycle.

The main steps in the cycle are as follows. First, the ligand activates the G protein
coupled receptor. The activated receptor promotes the replacement of GDP by GTP, fol-
lowing which, the active Gα-GTP splits off from the Gβγ dimer. The active Gα binds to an
effector enzyme such as adenylyl cyclase, and turns it on. In parallel, Gβγ binds to its own
target enzymes or channels. After a while (a few seconds to minutes), the slow GTPase
activity of the Gα hydrolyzes the GTP to GDP. Now the pieces reassemble: Gα-GDP and
the Gβγ associate, and the inactive heterotrimer can bind to another receptor to repeat the
cycle. There are two major features to note here. First, the G protein loop amplifies signals.
A receptor can catalyze the activation of numerous G proteins while the ligand is bound.
Each Gα remains active until the GTP is hydrolyzed, and this takes a minute or so. During
this time, the activated effector enzyme can process a large amount of substrate. Second,
there are two signaling outputs from a G protein: the Gα and the Gβγ. Each can potentially
influence several signaling pathways.

There is also a large subfamily of “small G proteins,” which lack βγ subunits. These
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include Ras, Rab, and many others. They have their own family of regulatory proteins that
affect the rate of GTP turnover.

Protein Kinase Pathways

Protein kinases add phosphate groups to specific sites on other proteins, and thereby affect
their activity. There are dozens of kinases known, which fall into two main classes: ser-
ine/threonine kinases and tyrosine kinases. These classes indicate the amino acids that are
phosphorylated by the kinase. The major serine/threonine kinases are PKC (protein kinase
C), PKA (protein kinase A), CaM-KII (calcium-calmodulin regulated type II kinase), and
MAPK (mitogen-activated protein kinase). Receptor tyrosine kinases (RTKs) are an impor-
tant class of tyrosine kinase. Beyond the specificity for a particular amino acid substrate,
each kinase has its own range of sequence preferences, which can be exquisitely specific or
very broad. Kinase activity is regulated in many ways, including second messengers such as
Ca, DAG or cAMP, phosphorylation, membrane association, or even direct ligand binding.

Phosphatases

These reverse the activity of kinases: they remove phosphate groups. Like kinases, they
have their own classes, isoforms, substrate specificities and so on. Major phosphatases are
PP-2A (protein phosphatase 2 A), PP-1 (protein phosphatase 1) and calcineurin. It used to
be thought that their only role was to balance out kinase function, but it is now clear that
they are in turn regulated in a wide variety of ways and contribute actively to signaling.

Phospholipases

These take phospholipids, which are a major constituent of the cell membrane, and turn
them into active signaling molecules. Examples include PLA2 (phospholipase A2), PLC-β
(phospholipase C-β), and phospholipase D. PLC-β is particularly interesting as it produces
two signals: diacylglycerol (DAG) and IP3 (inositol triphosphate). PLA2 produces AA,
which is a membrane-permeable signal and may be involved in retrograde signaling. It
should be pointed out that many phospholipids themselves are important in signaling.

Cyclases

The main cyclases are AC and GC (adenylyl and guanylyl cyclases), which produce the
cyclic nucleotides cAMP and cGMP from ATP and GTP, respectively. There are at least
ten ACs known, each of which has its own regulatory preferences. All ACs are activated by
Gsα; most are inhibited by Giα, and there is regulation by βγ, phosphorylation, and so on,
in various combinations.
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Phosphodiesterases

These degrade cAMP and cGMP, and thereby turn off signals from cyclases. Regulatory
mechanisms include CaM-dependence and phosphorylation.

Calcium

Although calcium is just a simple ion, and not really a pathway, it is arguably the most im-
portant single signaling molecule. The regulation of Ca alone involves ligand and voltage-
gated channels, pumps, intracellular stores, buffers, diffusive microenvironments and more.
It is involved in the regulation of almost all kinds of pathways, and there are whole families
of proteins such as CaM (calmodulin), whose only role is to detect Ca levels as part of the
regulation of other proteins.

10.2 Modeling Signaling Pathways

10.2.1 Theory

Chemical rate theory is an old, well-established subject. A lot of it has to do with analytical
derivation of results that we, in our modern-day decadence, leave to computers. For our
purposes all we have to understand is a single rate equation:

A � B
k f��
kb

C � D � (10.1)

By definition, this is described by a differential equation of the form

d � A ��� dt � kb �C �	� D ��
 k f � A �	� B �� (10.2)

where the square brackets indicate the concentration of the specified molecule. The mass
conservation laws constrain the remaining concentrations, once the starting concentrations
and the current value of [A] are known. You have already encountered very similar rate
equtions when studying the Hodgkin-Huxley model of activation of sodium channels (Eqs.
4.11–4.13).

Enzyme catalysis is a very important part of biochemical reactions. One of the simplest
and best descriptions of enzyme kinetics is due to Michaelis and Menten. Way back in
1913, they described catalysis as a two-step process, where the enzyme and substrate first
reversibly combine to form a complex (Michaelis and Menten 1913). This complex can
then can go forward to form the product in an essentially irreversible step:

Enz � Sub
k1��
k2

Enz � Sub
k3� Enz � Prd � (10.3)
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Although we need three rate constants here, Michaelis and Menten went on to specify only
two parameters which do an excellent job of representing enzyme properties. These are:

Km ��� k2 � k3 � � k1 (10.4)

and
Vmax � k3 � (10.5)

Km is the Michaelis-Menten constant for the enzyme. It is the concentration of substrate at
which the rate of generation of product is half maximal. I leave the derivation of this as an
exercise for the reader.

Vmax is the maximum velocity of the enzyme, i.e., the rate of formation of product when
there are saturating amounts of substrate present. All of the enzyme will then be complexed
with the substrate, so Vmax is just k3.

10.2.2 Sources of Data

A brief digression on sources of data is in order here. It is almost certain that a mod-
eler in search of biochemical data will have to refer to the original literature, both for the
reaction mechanisms and for the parameters. Journal of Biological Chemistry accounts
for about half of the work on the subject. It provides its entire contents on the Inter-
net (http://www-jbc.stanford.edu/jbc/) and on CD-ROM, making literature searches almost
pleasant. The remainder is partitioned between many other journals, such as European
Journal of Biochemistry, Proceedings of the National Academy of Science, Biochemistry,
and many others.

10.2.3 Figuring Out the Mechanisms

Signaling pathways are typically represented as neat little black boxes connected with ar-
rows. The first step in constructing a model of such a pathway is to open up the black box
and recoil in horror at the seething mass of interactions inside. These interactions, which are
frequently ill-defined in mechanistic terms, must be framed in terms of individual chemical
reactions. In GENESIS, these are binding/reversible reactions, and Michaelis-Menten en-
zyme reactions. Complete mechanistic details for signaling pathways are available in only
a few cases. G protein signaling, for example, has been worked out in considerable detail
(Fig. 10.2, and Gilman 1987). The classical pathway for cAMP signaling has also been
extensively studied and modeled (Levitzki 1984). Lauffenburger and Linderman (1993)
provide many examples of signaling pathways that have been modeled with varying de-
grees of realism. It is much more common to have partial mechanistic details available.
For example, several important kinases including PKC and PKA are known to incorporate
an enzyme site and a pseudosubstrate region, which binds to and inactivates the enzyme
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site. The process of activation of these enzymes can then be described in terms of the re-
lease of the pseudosubstrate from the enzyme site. As a modeler, one may have to make
compromises on several fronts:

� If one is lucky, the mechanistic data may actually go beyond what you need or can
handle. PKA regulation is a case where there is such an overabundance of infor-
mation (e.g., Døskeland and Øgreid 1984). Judicious simplification is usually not
difficult in such cases.

� At the other extreme, mechanistic details may be so sparse that you have to develop an
“empirical” model, which uses the simplest possible mechanisms that fit the observed
data. This approach works surprisingly well, especially if there are plenty of data to
constrain the system. A common situation is where there are several known activators
for an enzyme, each of which is described by a different concentration-effect curve.
The dumbest approach is then to treat each activation process as a separate reaction,
resulting in an activated enzyme with different rates. This has been done, for example,
for the activation of PLA2. One can often go a step further and rule out certain
possible mechanisms on the basis of such raw concentration-effect curves. This is
discussed below.

� The general, and most common case, is that some of the crucial mechanistic details
are known, and the rest are a bit fuzzy. One can often fall back on mechanisms for
similar pathways to fill in the gaps. Otherwise, one just has to plug the holes with the
simplest mechanisms that will work.

As an example of figuring out mechanistic details, consider protein kinase C (Nishizuka
1992). It is known to be regulated by a pseudosubstrate domain that normally binds to and
blocks the kinase site. Activators function by releasing this blockage, in assorted ways.
This crucial regulatory information enables us to predict that most activators will expose
an enzyme site of identical activity. This implies that the strength of the activator is likely
to depend on its efficacy in releasing the block, rather than on special properties of the
enzyme-activator complex. So, the active enzyme can be represented as a single pool, to
which different activators contribute an amount determined by their respective efficacy. To
round off the picture, let us consider activation by Ca, DAG, and AA. This lets us draw
up the first skeleton of the activation process (Fig. 10.3). We just need to sum up the
individual contributions into a total final activity, as we assume that the exposed enzyme
site is identical in all cases. We can further elaborate on the activation process by noting
that each of the activators works synergistically with the others. One way of modeling this
might be to add further reactions where the two activators combine, as illustrated by the
Ca-AA synergistic pathway in dotted lines. As it turns out, we can considerably refine the
activation mechanisms because the concentration-effect curves require even more complex
interactions for the model to fit well.



178 Chapter 10. The Network Within: Signaling Pathways

3

Active
PKC

Ca

Inactive
PKC

AA.PKC

DAG
DAG.PKC

AA

Ca.PKC

+
+

AA.Ca.PKC

AA

+

PKC
activity

[Ca]

A B

Figure 10.3 (A) Skeleton model of PKC activation. (B) Example concentration-effect curve.

10.2.4 Reaction Rate Constants

When a signaling pathway is modeled in terms of biochemical reactions, the immediate pa-
rameters required are rate constants and initial concentrations. Unfortunately, biochemists
rarely provide parameters with modelers in mind. The most common form for expressing
biochemical data is the concentration-effect curve (Fig. 10.3B) which describes an effect,
such as activation, rate of production, or some similar experimental quantity, in terms of
the concentration of an activating agent. Mechanistically, the link between the concen-
tration and the effect is quite likely to involve numerous intermediate steps. By the time
you get to the point where you want to fill in rates, we assume that you have a specific
mechanistic model in mind, so you should have an idea of what these steps are. Obviously,
you want to start with the simplest curve involving the fewest unknowns. If one must ex-
press a concentration-effect curve as a single number (losing information in the process)
it is the concentration at half-maximum, Kd . Assuming that your reaction is first-order,
Kd � kb � k f . If in addition one has information about the time-course τ of the reaction, one
can completely define kb and k f . This procedure is fine in theory. In practice, if you do
not actually run your simulation and compare the concentration-effect plot point-by-point,
you will throw away a lot of valuable data and probably lose the chance to catch serious
mistakes in your assumptions. Many papers report families of concentration-effect curves
under various conditions. Such sets of curves embody enormous amounts of information to
help constrain rates, mechanisms, and interactions between different activators.

10.2.5 Enzyme Rate Constants

Enzyme rate constants are usually reported as the maximal enzymatic rate Vmax and the
Michaelis-Menten constant Km. This is obviously insufficient data for the three rate con-
stants in the standard formulation for an enzyme reaction. As already mentioned, the max-
imum velocity of the reaction Vmax � k3. From the Michaelis-Menten definition, Km �
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� k3 � k2 � � k1. One option to fill in the missing rate constant is to assume that k3 and k2 are
in a fixed ratio:

k2 � xk3 � (10.6)

Then,

k1 � � 1 � x � k3 � Km � (10.7)

I use a value of x � 4. Exploring a huge range of such scale factors (from 0.4 to 40)
leads me to believe that the behavior of most models is remarkably insensitive to the exact
value of x. In other words, the Michaelis-Menten formulation captures most of the essential
properties of the enzyme.

There are some exotic complications to consider when obtaining enzyme rates from
the literature. Many membrane-bound measurements are conducted in artificial membrane
systems. The composition of these membranes may strongly affect rates. One also has to
be extremely careful of situations where the enzyme has access to only a limited amount of
substrate. This may happen in experiments where both enzyme and substrate are micelle-
bound, for example, PLA2.

10.2.6 Initial Concentrations

Determining initial concentrations for signaling molecules is a task fraught with peril. In
principle, one just has to look up purification stages for enzymes, and standard biochemical
measurements for substrates and messengers. In practice, one needs to watch out for:

� Tissue and species specificity

� Partitioning between different fractions of tissue (membrane, cytosolic, particulate,
etc.)

� Purification methods, and yield and loss of activity during purification

� Loss of activity (or sometimes even gain of activity!) during storage

and many other complications. Given all these hazards, the more references for each con-
centration, the better.

Typically, one will need to provide only a few initial concentrations and just let the sim-
ulation run to steady-state to obtain the remainder. This is essential, as it is experimentally
very difficult to obtain steady-state values for many of the reaction intermediates. If one has
equilibrium values for some molecules, that is a bonus and an excellent cross-check.
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10.2.7 Refining the Model

There is no final step to building a good model of any kind. In signaling models in particular,
it takes many iterations to converge to a good representation of the system. All the preceding
steps, (except hopefully the theory) will need to be revisited as the model evolves. Most of
my models of individual pathways have involved 20 or more cycles of improvement. An
important part of this refinement includes repeated scans through the literature to hunt out
alternative sources for each parameter, and cross-checks that become feasible as the model
becomes more predictive.

10.3 Building Kinetics Models with GENESIS and Kinetikit

As with other simulations and demonstrations in this book, we draw a distinction between
the underlying GENESIS simulation modules and the user interface based on them. The
modules for kinetic modeling are provided by the kinetics library, whereas Kinetikit (or
kkit) is the user interface. Kinetikit is similar to Neurokit in the sense that it is a research
tool rather than a tutorial program. It makes much better use of the features provided by
XODUS, and we hope you will find it easier to use.

10.3.1 The kinetics Library

As you will learn in Chapter 12, a GENESIS library contains the definitions of commands
that will be accepted by GENESIS, as well as basic building blocks, called objects, which
are used for the construction of simulations. The kinetics library defines additional com-
mands and objects to extend the capabilities of GENESIS to simple models of biochemical
signaling. By “simple” I merely mean that the only interactions considered are chemical.
There is ample complexity in biological signaling, even when such vital complications as
diffusion, compartmentalization, and enzymatic scaffolding are not addressed.

A simple exponential Euler scheme (Sec. 20.3) is used by the kinetics library. Fortu-
nately, stiffness does not seem to be such a problem in the kinetic computations. Time steps
of 2 msec are sufficient for most simulations of biochemical reaction systems. It is trivial to
implement a crude variable time step scheme when known steep stimuli occur — just lower
the time step. About 100 µsec will usually give you sufficient stability and accuracy for
such cases. A ksolve object (cousin to the hsolve) is being designed to use much faster im-
plicit and variable time step techniques. Even the current methods work many times faster
than real-time for all but the most complex simulations.

All calculations are carried out on numbers of molecules, rather than concentrations.
This simplifies computations where molecules are exchanged between chemical compart-
ments of different volumes. However, concentrations are calculated locally by each molec-
ular pool, by dividing the number of molecules by a vol field of the pool object. The vol
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field is typically scaled to include Avogadro’s number so that the concentration units are µM
or some other familiar units. The kinetics library assumes bulk quantities of all molecules.
Markov models are specifically not simululated in the current kinetics library. Caution
should therefore be employed when dealing with tiny compartments: it has been estimated
that there are about ten Ca ions in a small dendritic spine. Mean rate theory may not apply
in such situations.

The GENESIS objects provided by the kinetics library are the pool of molecules, the
reac for simple reactions, and an enz which can be attached to a reactant pool to provide an
enzyme site. A simple concchan object is provided for constructing concentration-driven
channels within the kinetics library. It is a much simpler version of the voltage- and ligand-
gated channels used elsewhere. These objects are described in much more detail in the
GENESIS Reference Manual.

10.3.2 Kinetikit

The method of choice for developing kinetic simulations in GENESIS is to use Kinetikit,
which is a graphical interface and simulation tool designed specifically to make it easy to
build and manage complex kinetic simulations. Kinetikit is internally documented in detail.
To get you started quickly, we’ll go through a demonstration simulation that illustrates
many of its features. This demonstration involves a simple reaction where a molecule A
reversibly converts into a molecule B:

A
k f��
kb

B � (10.8)

Step 0

Make sure you have a version of GENESIS that includes the kinetics library. If there is
a startup message of the form “The kinetics library is copylefted under the LGPL, see
kinetics/COPYRIGHT.” then it is there. If not, you will need to follow the installation
steps detailed in the kinetics documentation. Once you have it installed, you are ready to
go. After changing to the directory in which Kinetikit resides (usually Scripts/kinetikit),
perform the following steps.

Step 1

Type:

�������������
	�	���

This will display a start-up window detailing the philosophy behind Kinetikit models, and
also indicating the licensing terms (free!). As soon as Kinetikit has loaded, this window will
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vanish and will be replaced by a screen similar to that in Fig. 10.4. The control window
includes various menu options on the top. The simulation run control buttons in bright
traffic-light colors are just below, and dialogs for the simulation duration and current time
below them. At the bottom is a row of strange icons. These are the building blocks for
a kinetics simulation, and their role will shortly become clear. Below the control window
is the Kinetikit edit window, where the reactions are set up. It will initially be blank. The
graph windows are the only other windows currently visible.

Figure 10.4 Screen dump of Kinetikit.

Step 2

Use the left mouse button to click and drag the first of the icons, the blue 	�������� icon,
into the edit window. Two things should happen: a 	�������� icon should appear in the edit
window, and a new window should pop up with lots of dialogs for parameters. What you
have just done is to create a new pool of molecules in the simulation, and to help you along,
the parameter window has been displayed. Typically the first thing one does is to change
the color and name of the icon to something that suits you. Try � ��� and 	 . Then hit the
�����

button in the parameter window.
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Step 3

Familiarize yourself with the properties of the edit window. Move the 	�� � ��� icon in the edit
window around a little, using click-and-drag with the mouse. The layout of the reactions
has nothing to do with the numerical calculations, but a clean layout makes it much easier to
figure out what is going on. Now double-click on the 	�������� icon. The parameter window
reappears. Set the initial concentration

� � � ���� to 1. Now drag the 	�� � ��� icon to the graph
window. You have just made yourself a plot, labeled 	�� � � . The “

� � ” suffix indicates the
field that is being plotted, in this case the concentration

� � of element A.

Step 4

Drag in a � ����� and another 	�������� (let’s call it � ). Add the � to the graph as well. Now we
can set up a reaction. Drag 	 onto � �	�
� , and then � �	�
� onto � . Little green arrows should
appear, linking them. If your reaction components are too close together, the little arrows
don’t fit, and so they vanish. You can zoom and pan the edit window using the angle-bracket
and arrow keys, to see this effect. Also try rearranging the reaction using click-and-drag
within the edit window.

Step 5

Run the reaction. Hit the green ��
� �  button, and watch the reaction proceed. You can
hit the ���� � button in mid-stream, and start up again without affecting the calculations.
The � � � �� button clears the simulation. Play around with the parameters of the pools
(esspecially

� � � ���� , �
� ���� and � � � ), and the reaction ( 	� and 	�� ) to get a feel for how it

all works. Double-click on 	 or � while the simulation is running, or hit the �
�  	�� � button
in the parameter window, to monitor concentrations. Also try double-clicking on the graph
axes and on the plot labels, to pop up parameter windows for specifying display parameters.

Step 6

Edit the reaction. Drag 	 onto 	 � �	�
� again. The green arrow disappears. Repeat the
drag, and it reappears. This is fine for simple editing, but what happens if you want to
make it a second-order reaction 2A �� B? You will have to go to the � � �� ��� � menu and
enable higher-order reactions to accomplish this feat. Now drag 	 � �	�
� onto Barney, the
evil dinosaur icon in the control window. Chomp! Barney has deleted 	 � �	��� . This works
for everything in the edit window, and also for plots.
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Step 7

Save the reaction. Click on the � � ��� menu button, fill in some notes, and enter your chosen
filename, e.g., “ � ����� � � � .” It will be a script file, so you should have the usual “ � � ” suffix.
Having saved the file, you can restore your simulation by typing:

������������� � �	�
��� � �

I will assume, for the remainder of the chapter, that you have the good sense to save
each version of your simulations frequently.

Exercise for the reader:

Make and test an enzyme reaction. Hint: an enzyme site cannot exist without an enzyme.
So, you will need to drag the enzyme onto an existing pool.

10.3.3 A Feedback Model

As a more complete example of the development of a kinetics simulation, we will use
Kinetikit to come up with a feedback pathway that exhibits some interesting properties such
as bistability. We then show how to run this model without the interface, and finally how to
hook this up to other GENESIS components.

The Model

The feedback model consists of two enzymes, X and Y, each of which is activated by the
product of the other enzyme. The activation process is second-order. We assume that the
substrates are buffered: their concentration is fixed no matter how much is used up. The
products are degraded in a simple first-order reaction to avoid runaway feedback. The
reactions are represented in Fig. 10.5. The figure has almost a one-to-one relationship
with the Kinetikit implementation, so it should be easy to implement. The saved model is
available in the kinetikit/examples directory as feedback.g.

Notes on setting up the feedback model

1. All enzyme and reaction rates are 1.0, except for the degradation reactions, which
have a k f of 0.16 and a kb of 0. Note that these are not the default values, so you will
have to explicitly set them.

2. All initial concentrations are 0.0, except the X and Y substrates, which are buffered
to an initial value of 1, and the inactive forms of X and Y, which are at an initial value
of 1 but are not buffered.
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3. Two molecules of product bind to one molecule of inactive enzyme to activate it.
Look up the � �� � � � � menu to see how to do this sort of second- and higher-order
reaction. All other reactions are first-order.

4. The arrows with a double bend represent enzyme reactions.

5. The default time step of 0.01 is good for running the model.

6. Plot out the concentrations of X and Y to monitor the simulation. You can also
double-click X or Y at any time to read out the concentration from the

� � dialog.

7. Do not use spaces in the names of the components in the model. It will confuse the
simulator when it tries to restore simulations from a file.

4

X

X productX substrate

Y inactive

Degrade

Y

Y product Y substrate

X inactive

Degrade

Figure 10.5 Reaction mechanism for feedback model.

Bistability

As a preliminary check on your model, just run it for, say, 100 seconds. X and Y should
remain steady at a concentration of 0 � 0. The steady-state value you have now reached is the
lower bistable point. To convince yourself that there is an upper steady-state mode, dump
some X product into the system by setting its

� � to 2, using the dialog box that will appear
when you click on � � � � . Watch the system climb up to the upper activated state. Let it
run a while longer, and convince yourself that the system has now stabilized at a new level.
Note this level. If you are ambitious, you can now figure out how to push the system back
and forth between the two stable levels. Are they always the same?

Concentration-Effect Curves

This manual fiddling with reaction parameters is a rather cumbersome way of identifying
a bistable system, and does not easily generalize to a complex model. There is a simpler,
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experimentally more feasible, and theoretically informative way of characterizing a biolog-
ical feedback system of this kind. This technique works by “breaking”’ the loop at some
point, and plotting concentration-effect curves of X vs. Y and vice versa. When the two
curves are plotted on the same axes, so that the X vs. Y curve now has been flipped around,
their intersection points define the behavior of the system. You can convince yourself that
a single intersection point always defines the steady-state, and that if you have three inter-
section points the outer two must be steady-state and the middle one the threshold. This is
discussed in more detail in Bhalla and Iyengar (1997). We will use two methods for gener-
ating the concentration-effect curves. In each case, we buffer one of the enzymes to break
the loop, and step it through a series of concentration values.

Brute force The simple way of doing this is to double-click on � , and flip the �����	� � �
toggle on. Now the concentration of X is set by

� � � � �� . Run until it reaches steady-
state, and note the concentration [Y]. Increase X, and repeat until Y saturates. Now go
through the whole process again, with Y buffered and X free. Hmm . . . The numbers
look familiar. Could you have predicted this?

Using xtab If you have to generate the concentration-effect curve more than once, say, for
different parameters, you will probably wish to automate the whole process. The xtab
object is good for this. This is an extended object (see Sec. 14.5) which is created by
Kinetikit. Drag in an �


� � icon, and connect it up to � . Set up the �

� � waveform to

a “staircase” of levels, with appropriate times for each step. You may need to refer
to the Kinetikit documentation to help you with this. Activate the �

� � , and run the
simulation again. Your concentration-effect curve will be generated without further
effort on your part.

Exercises:

Using the numbers you painstakingly noted down before, plot out the two concentration-
effect curves of X vs. Y and Y vs. X. Put them both on the same axis and find the inter-
section points. You may need to smooth the curves, or find extra points. Do they tally with
your previous estimates for the bistable points? Devise a way of testing the accuracy of the
estimate of the threshold. Hint: adjust the degradation rates again to set up an initial condi-
tion for X and Y. Alternatively, buffer the product concentrationss of X or Y. Why won’t it
work if you set up the initial condition by buffering X or Y to the initial desired level, and
then release the buffering?

This model is rather unrealistic because the baseline activity of X and Y is zero. You
could put in a baseline activity by setting kb of the degradation pathway to some non-zero
number. Find a number that gives reasonable results.
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10.3.4 Beyond Kinetikit

The simulation files generated by Kinetikit are regular GENESIS script files. This means
that you can manipulate them and hook them up to simulations in much the same way as
other script files. (You will best understand this section after reading the introduction to
GENESIS programming in Chapter 12.)

Batch Mode

The best part of a graphical interface is often the ability to turn it off. In Kinetikit this, and
many other simulation defaults, can be assigned through the PARMS.g file. Make a copy of
the PARMS.g file in your current directory, and edit it to set the

 � � flag to zero. Now when
you load your simulation, there will be a few minor complaints which you can ignore. The
simulation can be examined as usual through the command line, but no XODUS modules
will be displayed. This is an ideal arrangement for those long overnight runs that you want
to grind away in the background.

Modifying Parameters

The most common application for batch mode runs is parameter searches. Modifying the
parameters in such situations is just a matter of using standard setfield and getfield com-
mands, usually in batch files. When you combine this with the standard GENESIS script
commands for saving values to data files, you have an effective way of automating long
runs. For example, suppose we wished to run our concentration-effect curves for the feed-
back loop with various rates for the degradation pathways. This could be accomplished
using the following script file.
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The output of such a run would be a set of concentration-effect curves that could be
examined to find all the intersection points.

Saving Outputs

There are various ways you can save results of simulations in Kinetikit. The simplest is to
create plots for the desired quantities, run the simulation, and dump the results from the
plots. This can be done for individual plots (double-click on the plot) or for all of them (go
to the 
�� � ��� � menu). The example script above illustrates another way of saving specific
quantities to a file. The standard GENESIS commands for dumping figures to postscript
files (by typing Ctrl-p within the window) also work for the graph and edit window. There
are special postscript options in the � � ��� � menu.

10.3.5 Connecting Kinetic Models to the Rest of GENESIS

Kinetikit allows you to do a lot of things, but only with a few kinds of GENESIS building
blocks. It is often desirable to link Kinetikit models to the rest of GENESIS, especially
to develop models that span multiple levels of neuronal function. Again, one can take
advantage of the fact that Kinetikit models are stored in regular script files. There are two
main ways of hooking kinetic models up to the rest of GENESIS.
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1. Tabs A very efficient way of coupling different kinds of simulation is to use tables to
provide inputs to Kinetikit or to a batch file based on a kinetic model. For example,
you might want to feed the Ca levels from a single cell model into a kinetics simu-
lation. Aside from its simplicity and computational efficiency, the advantage here is
that the time steps used in the two situations can be radically different. The big draw-
back of this approach is, of course, that it assumes that the source of the tabulated
data doesn’t care what the kinetic part of the model does.

2. Direct messaging This is the “proper” way of hooking up kinetic and other simulations.
The simplest way to get information into kinetic models is to identify a molecule
whose concentration is determined by the non-kinetic part of the model, and that is
explicitly modeled there. Consider Ca influx through an ion channel, which may be
modeled using a Ca conc object. We just need to create a kinetic “slave” counterpart
of this Ca conc, and hook it into the kinetic model. Likewise, messages can be
sent from “pools” from the kinetics library to specify concentrations used by other
GENESIS modules.

It is often necessary to do unit conversions in such situations. For example, we may
need to factor in Faraday’s constant, or Avogadro’s number, or the volume of dif-
ferent cellular compartments. The xtab module in Kinetikit (which is based on the
GENESIS table object) is a good way of implementing linear, logarithmic, or even
more exotic conversion operations where necessary.

The kinetics library also allows one to send messages to reac elements so as to control
their rate constants. This provides a great deal of flexibility. (See Exercise 5 below.)

10.4 Summary: Molecular Computation

At the risk of stating the obvious, a few aspects of the computational properties of signal-
ing pathways are outlined here. Parallels have been drawn between signaling systems and
Boolean logic (Bray 1995), and even between neural networks (Alberts et al. 1994). Such
analogies, of course, are only part of the story — otherwise, we could avoid the whole
messy business of modeling chemical kinetics.

It is easy to see how a signaling pathway could perform logic operations. And gates
could be represented as enzymes that need two or more simultaneous signals for activation.
Or gates are enzymes that can be activated by either of two signals. Inverters are simply
inhibitory signals. Examples of all these situations exist, but the actual biochemistry is
much richer than Boolean logic.

Analog computation might be a better way to think of biochemical signaling. This
would allow one to consider such signaling properties as amplification, as we have seen for
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G proteins, synergy, where the effect of two signals is more than additive, cooperativity,
where the response curve is strongly nonlinear, and so on.

Even this viewpoint has its limitations. One of the most important properties of real-
world neuronal as well as biochemical signaling is time-delays. Rather than being a limi-
tation of such signaling, this is one of the most interesting elements in the computational
repertoire of such networks. Integration and differentiation of the time-course of signals
now becomes possible, as does short-term storage of information.

The analogies could be taken to the absurd, by invoking electrical circuitry as the next
level of analysis. At this point the analysis is almost as complex as the original biochemistry
itself, so it doesn’t help much. In any case, we still have not considered the computational
implications of diffusion, compartmentalization, and the anchoring of successive enzymes
on protein scaffolds. Beyond that, there are all the possibilities inherent in biochemical
control of the cytoskeleton, membrane traffic, and of course the genes themselves. To
put the scale of this problem into perspective, computer scientists long ago realized that
self-modifying code was insanely difficult to analyze. Nature has done much better here.
Imagine a computer where you could redesign the CPU, while it was running, from within
software. Biochemical control of the cytoskeleton and genes is a functioning example of
self-modifying hardware, software, and everything in between.

I regard the current state of the art in the field of biochemical signaling as similar to
that in electrophysiology fifty years ago: one can begin to analyze the interactions as point
processes, but limitations in the available data and the techniques currently make it difficult
to construct more complex models. This is likely to change rapidly in the coming years. We
are now at the point where a few specific examples of microcompartmentalization of sig-
naling pathways have been found. These have enormous implications for the ways in which
we analyze such pathways. Macroscopic rate constants and concentrations become almost
irrelevant in such cases. Reaction mechanisms and pathways themselves may change in
ways that are nearly impossible to duplicate in a test tube. Computational methods are one
possible way in which we can begin to take test-tube data and scale them down to fit inside
a dendritic spine. They are also perhaps the only way in which we can tackle the growing
mountain of available data, and begin to understand the immensely complex network within
the cell.

10.5 Exercises

1. Using the feedback loop model, compare results at different time steps and using
explicit conservation rules. You will need to look at the Kinetikit on-line help manual
to find out how to set up conservation rules in the model.

2. Build the G protein model from Fig. 10.2. Estimate the amplification provided by
this G protein. Parameters for G proteins are readily available from the literature,
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or from the library of models of signaling pathways available through the GENESIS
Users Group (Appendix A.3).

3. One of the most useful operations in developing complex signaling models is to
merge multiple pathways into a complex model. Groups are a very useful organizing
tool in such situations. Take the feedback model you built previously, and put it all
into a group. Now load in the G protein model on top of this. Can you now see a role
for groups? Experiment with using the G protein model as an input pathway for the
feedback model.

4. In the feedback model, one way of getting the concentration-effect curve was to pro-
vide a series of concentration steps using an xtab element. Try to replace the step
waveform with a linearly or logarithmically increasing table. Why might you have
problems here? How long would you have to run to get a reasonable answer?

5. The k f and kb of the reac object class in the kinetics library can be controlled through
messages. This allows one to implement many kinds of rate equations. Implement
a Hodgkin-Huxley type ion channel using this facility. This can be done both us-
ing some of the special options in Kinetikit, and of course directly from the script
language. Estimate the execution speed of such a channel, and compare with the
tabchannels, which are highly optimized.

6. Exercise on buffering (challenging!): Design a buffer system for Ca that holds its
concentration at 1 µM over a wide range of added Ca. Work out how to improve the
buffering by changing

� The order of the reaction
� Cooperativity
� The Kd of the buffer
� The total amount of the buffer vs. its Kd , for a given initial Ca level of 0.1 µM.
� Estimate the speed of the buffer, by seeing how well it suppresses a large but

bufferable influx of Ca lasting for 10 msec.
� Estimate how fast such a buffer would work to lower Ca levels if the buffer were

suddenly released (by a flash of light) from a caged compound into a solution
containing Ca.
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